Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 999
Filtrar
1.
Curr Microbiol ; 81(6): 156, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656548

RESUMO

Aspergillus fumigatus and Fusarium solani infections have become severe health threat; both pathogens are considered a priority due to the increasing emergence of antifungal-resistant strains and high mortality rates. Therefore, the discovery of new therapeutic strategies has become crucial. In this study, we evaluated the antifungal and antivirulence effects of vanillin and tannic acid against Aspergillus fumigatus and Fusarium solani. The minimum inhibitory concentrations of the compounds were determined by the microdilution method in RPMI broth in 96-well microplates according to CLSI. Conidial germination, protease production, biofilm formation, and in vivo therapeutic efficacy assays were performed. The results demonstrated that vanillin and tannic acid had antifungal activity against Aspergillus fumigatus, while tannic acid only exhibited antifungal activity against Fusarium solani. We found that vanillin and tannic acid inhibited conidial germination and secreted protease production and biofilm formation of the fungal pathogens using sub-inhibitory concentrations. Besides, vanillin and tannic acid altered the fungal membrane permeability, and both compounds showed therapeutic effect against aspergillosis and fusariosis in an infection model in Galleria mellonella larvae. Our results highlight the antivirulence effect of vanillin and tannic acid against priority pathogenic fungi as a possible therapeutic alternative for human fungal infections.


Assuntos
Antifúngicos , Aspergillus fumigatus , Benzaldeídos , Biofilmes , Fusarium , Testes de Sensibilidade Microbiana , Polifenóis , Taninos , Benzaldeídos/farmacologia , Fusarium/efeitos dos fármacos , Taninos/farmacologia , Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Aspergillus fumigatus/efeitos dos fármacos , Animais , Aspergilose/microbiologia , Aspergilose/tratamento farmacológico , Virulência/efeitos dos fármacos , Larva/microbiologia , Larva/efeitos dos fármacos , Fusariose/tratamento farmacológico , Fusariose/microbiologia , Esporos Fúngicos/efeitos dos fármacos , Mariposas/microbiologia , Mariposas/efeitos dos fármacos
2.
Microb Pathog ; 190: 106624, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492828

RESUMO

Pseudomonas aeruginosa is widely associated with biofilm-mediated antibiotic resistant chronic and acute infections which constitute a persistent healthcare challenges. Addressing this threat requires exploration of novel therapeutic strategies involving the combination of natural compounds and conventional antibiotics. Hence, our study has focused on two compounds; cuminaldehyde and ciprofloxacin, which were strategically combined to target the biofilm challenge of P. aeruginosa. The minimum inhibitory concentration (MIC) of cuminaldehyde and ciprofloxacin was found to be 400 µg/mL and 0.4 µg/mL, respectively. Moreover, the fractional inhibitory concentration index (FICI = 0.62) indicated an additive interaction prevailed between cuminaldehyde and ciprofloxacin. Subsequently, sub-MIC doses of cuminaldehyde (25 µg/mL) and ciprofloxacin (0.05 µg/mL) were selected for an array of antibiofilm assays which confirmed their biofilm inhibitory potential without exhibiting any antimicrobial activity. Furthermore, selected doses of the mentioned compounds could manage biofilm on catheter surface by inhibiting and disintegrating existing biofilm. Additionally, the test combination of the mentioned compounds reduced virulence factors secretion, accumulated reactive oxygen species and increased cell-membrane permeability. Thus, the combination of cuminaldehyde and ciprofloxacin demonstrates potential in combating biofilm-associated Pseudomonal threats.


Assuntos
Antibacterianos , Benzaldeídos , Biofilmes , Ciprofloxacina , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa , Espécies Reativas de Oxigênio , Biofilmes/efeitos dos fármacos , Ciprofloxacina/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Antibacterianos/farmacologia , Benzaldeídos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Fatores de Virulência , Cimenos/farmacologia , Sinergismo Farmacológico , Permeabilidade da Membrana Celular/efeitos dos fármacos , Humanos
3.
Plant Physiol Biochem ; 207: 108427, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38367389

RESUMO

Fluorescent materials and technologies have become widely used in scientific research, and due to the ability to convert light wavelengths, their application to photosynthetic organisms can affect their development by altering light quality. However, the impacts of fluorescent materials on aquatic plants and their environmental risks remain unclear. To assess the effects of luminescent materials on floating aquatic macrophytes and their rhizosphere microorganisms, 4-(di-p-tolylamino)benzaldehyde-A (DTB-A) and 4-(di-p-tolylamino)benzaldehyde-M (DTB-M) (emitting blue-green and orange-red light, respectively) were added individually and jointly to Spirodela polyrhiza cultures and set at different concentrations (1, 10, and 100 µM). Both DTB-A and DTB-M exhibited phytotoxicity, which increased with concentration under separate treatment. Moreover, the combined group exhibited obvious stress relief at 10 µM compared to the individually treated group. Fluorescence imaging showed that DTB-A and DTB-M were able to enter the cell matrix and organelles of plant leaves and roots. Peroxidation induced cellular damage, contributing to a decrease in superoxide dismutase (SOD) and peroxidase (POD) activities and malondialdehyde (MDA) accumulation. Decomposition of organelle structures, starch accumulation in chloroplasts, and plasmolysis were observed under the ultrastructure, disrupting photosynthetic pigment content and photosynthesis. DTB-A and DTB-M exposure resulted in growth inhibition, dry weight loss, and leaf yellowing in S. polyrhiza. A total of 3519 Operational Taxonomic Units (OTUs) were identified in the rhizosphere microbiome. The microbial communities were dominated by Alphaproteobacteria, Oxyphotobacteria, and Gammaproteobacteria, with the abundance and diversity varied significantly among treatment groups according to Shannon, Simpson, and Chao1 indices. This study revealed the stress defense response of S. polyrhiza to DTB-A and DTB-M exposures, which provides a broader perspective for the bioremediation of pollutants using aquatic plants and supports the further development of fluorescent materials for applications.


Assuntos
Araceae , Benzaldeídos , Benzaldeídos/farmacologia , Fotossíntese , Antioxidantes/metabolismo , Cloroplastos/metabolismo , Luz , Plantas/metabolismo , Araceae/fisiologia
4.
J Basic Microbiol ; 64(2): e2300494, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37988661

RESUMO

Globally, cancer is the leading cause of death and morbidity, and skin cancer is the most common cancer diagnosis. Skin problems can be treated with nanoparticles (NPs), particularly with zinc oxide (ZnO) NPs, which have antioxidant, antibacterial, anti-inflammatory, and anticancer properties. An antibacterial activity of zinc oxide nanoparticles prepared in the presence of 4-nitrobenzaldehyde (4NB) was also tested in the present study. In addition, the influence of synthesized NPs on cell apoptosis, cell viability, mitochondrial membrane potential (MMP), endogenous reactive oxygen species (ROS) production, apoptosis, and cell adhesion was also examined. The synthesized 4-nitro benzaldehyde with ZnO (4NBZnO) NPs were confirmed via characterization techniques. 4NBZnO NPs showed superior antibacterial properties against the pathogens tested in antibacterial investigations. As a result of dose-based treatment with 4NBZnO NPs, cell viability, and MMP activity of melanoma cells (SK-MEL-3) cells were suppressed. A dose-dependent accumulation of ROS was observed in cells exposed to 4NBZnO NPs. As a result of exposure to 4NBZnO NPs in a dose-dependent manner, viable cells declined and apoptotic cells increased. This indicates that apoptotic cell death was higher. The cell adhesion test revealed that 4NBZnO NPs reduced cell adhesion and may promote apoptosis of cancer cells because of enhanced ROS levels.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Óxido de Zinco/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Benzaldeídos/farmacologia , Antibacterianos/farmacologia
5.
Rapid Commun Mass Spectrom ; 38(2): e9671, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38124165

RESUMO

RATIONALE: Sickle cell disease, a debilitating genetic disorder affecting numerous newborns globally, has historically received limited attention in pharmaceutical research. However, recent years have witnessed a notable shift, with the Food and Drug Administration approving three innovative disease-modifying medications. Voxelotor, also known as GBT440, is a promising compound that effectively prevents sickling, providing a safe approach to alleviate chronic hemolytic anemia in sickle cell disease. It is a novel, orally bioavailable small molecule that inhibits hemoglobin S polymerization by enhancing oxygen affinity to hemoglobin. The investigation demonstrated that voxelotor led to an unintended elevation of hemoglobin levels in healthy individuals by increasing serum erythropoietin levels. METHODS: Voxelotor and its metabolites in an in vitro setting utilizing equine liver microsomes were discussed. Plausible structures of the identified metabolites were inferred through the application of liquid chromatography in conjunction with high-resolution mass spectrometry. RESULTS: Under the experimental conditions, a total of 31 metabolites were detected, including 16 phase I metabolites, two phase II metabolites, and 13 conjugates of phase I metabolites. The principal phase I metabolites were generated through processes such as hydroxylation, reduction, and dissociation. The presence of glucuronide and sulfate conjugates of the parent drug were also observed, along with hydroxylated, reduced, and dissociated analogs. CONCLUSIONS: The data acquired will accelerate the identification of voxelotor and related compounds, aiding in the detection of their illicit use in competitive sports. It is crucial to emphasize that the metabolites detailed in this manuscript were identified through in vitro experiments and their detection in an in vivo study may not be guaranteed.


Assuntos
Anemia Falciforme , Doping nos Esportes , Recém-Nascido , Humanos , Animais , Cavalos , Hemoglobina Falciforme/química , Hemoglobina Falciforme/metabolismo , Hemoglobina Falciforme/uso terapêutico , Doping nos Esportes/prevenção & controle , Polimerização , Anemia Falciforme/tratamento farmacológico , Anemia Falciforme/metabolismo , Benzaldeídos/farmacologia , Benzaldeídos/uso terapêutico , Hemoglobinas
6.
ACS Infect Dis ; 10(1): 120-126, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38099713

RESUMO

Chemical screening efforts recently found that 3-phenoxybenzaldehyde, a breakdown product of alpha-cyano pyrethroids, was a potent spatial repellent against Aedes aegypti mosquitoes in a glass tube repellency assay. In order to characterize this molecule further and identify structure-activity relationships, a set of 12 benzaldehyde analogues were screened for their repellency and toxicity in vapor phase exposures at 100 µg/cm2. Dose-response analyses were performed for the most active compounds in order to better characterize their repellent potency and toxicity compared to those of other commercially available toxicants. The three most toxic compounds (LC50 values) were 3-chlorobenzaldehyde (CBA) (37 µg/cm2), biphenyl-3-carboxaldehyde (BCA) (48 µg/cm2), and 3-vinylbenzaldehyde (66 µg/cm2), which makes them less toxic than bioallethrin (6.1 µg/cm2) but more toxic than sandalwood oil (77 µg/cm2), a repellent/toxic plant essential oil. The most repellent analogues with EC50 values below 30 µg/cm2 were 3-phenoxybenzaldehyde (6.3 µg/cm2), isophthalaldehyde (23 µg/cm2), BCA (17 µg/cm2), and CBA (22 µg/cm2), which makes them about as active as N,N-diethyl-3-methylbenzamide (25.4 µg/cm2). We further investigated the activity of a select group of these benzaldehydes to block the firing of the central nervous system of A. aegypti larvae. Compounds most capable of repelling and killing mosquitoes in the vapor phase were also those most capable of blocking nerve firing in the larval mosquito nervous system. The results demonstrate that benzaldehyde analogues are viable candidate repellent and insecticidal molecules and may lead to the development of future repellent and vapor toxic vector control tools.


Assuntos
Aedes , Benzamidas , Repelentes de Insetos , Animais , Benzaldeídos/farmacologia , Mosquitos Vetores , Repelentes de Insetos/farmacologia , Repelentes de Insetos/química , Larva
7.
Mol Med Rep ; 28(5)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37800608

RESUMO

Gastrodia elata Blume has been widely used to treat various central and peripheral nerve diseases, and Para­hydroxybenzaldehyde (PHBA) is one of the indicated components suggested to provide a neuroprotective effect. In our previous, it was shown that PHBA protected mitochondria against cerebral ischemia­reperfusion (I/R) injury in rats. In the present study, how PHBA regulated the metabolic mechanism in blood following cerebral I/R was assessed to identify an effective therapeutic target for the prevention and treatment of ischemic stroke (IS). First, a rat model of cerebral ischemia­reperfusion injury was established via middle cerebral artery occlusion/reperfusion (MCAO/R). The therapeutic effect of PHBA on brain I/R was evaluated by assessing the neurological function score, triphenyl tetrazolium chloride, hematoxylin and eosin, and Nissl staining. Next, a non­targeted metabolomic based on high­performance liquid chromatography quadrupole time­of­flight mass spectrometry was established to identify differential metabolites. Finally, a targeted metabolic spectrum was analyzed and the potential therapeutic targets were verified by Western blotting. The results showed that the neurological function score, cerebral infarction area, hippocampal morphology, and the number of neurons in the PHBA group were significantly improved compared with the model group. Metabonomic analysis showed that 13 different metabolites were identified between the model and PHBA group, which may be involved in the 'tricarboxylic acid cycle', 'glutathione metabolism', and 'mutual transformation of pentose and glucuronates', amongst others. Among these, the levels of the most significant differential metabolite, dGMP, decreased significantly following PHBA treatment. Western blotting was used to verify the expression of membrane­associated guanosine kinase PSD­95 and the subunit of glutamate AMPA receptor GluA1, which significantly increased after PHBA treatment. In addition, it was also found that PHBA increased the expression of the light chain­3 protein and autophagy effector protein 1, whilst the expression of sequestosome­1 decreased, indicating that PHBA promoted autophagy. Similarly, in TUNEL staining and detection of apoptosis­related proteins, it was found that MCAO/R upregulated the expression of Bax and cleaved­caspase­3 whilst downregulating the expression of Bcl­2 and increasing the apoptosis of hippocampal neurons; PHBA reversed this situation. These results suggest that cerebral I/R causes postsynaptic dysfunction by disrupting the interaction between PSD­95 and AMPARs, and the inhibition of the autophagy system eventually leads to the apoptosis of hippocampal neurons.


Assuntos
Isquemia Encefálica , Ataque Isquêmico Transitório , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Ratos , Animais , Ataque Isquêmico Transitório/tratamento farmacológico , Isquemia Encefálica/tratamento farmacológico , Benzaldeídos/farmacologia , Benzaldeídos/uso terapêutico , Apoptose , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Proteínas Reguladoras de Apoptose/farmacologia , Traumatismo por Reperfusão/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
8.
Molecules ; 28(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37894709

RESUMO

Multicomponent reactions have emerged as an important approach for the synthesis of diverse and complicated chemical compounds. They have various advantages over two-component reactions, including the convenience of one-pot procedures and the ability to modify the structure of agents. Here, we employed in vitro and in silico studies to explore the anticancer potential of novel aminobenzylnaphthols derived from the Betti reaction (MMZ compounds). MTT assay was used to explore the cytotoxic activity of the compounds in pancreatic (BxPC-3 cells) and colorectal (HT-29) cancer cell lines or normal human lung fibroblasts (WI-38 cells). Proapoptotic properties of two derivatives MMZ-45AA and MMZ-140C were explored using AO/EB and annexin V-FITC/PI staining. In silico studies including ADMET profiling, molecular target prediction, docking, and dynamics were employed. The compounds exhibited cytotoxic properties and showed proapoptotic properties in respective IC50 concentrations. As indicated by in silico investigations, anticancer activity of MMZs can be attributed to the inhibition of ADORA1, CDK2, and TRIM24. Furthermore, compounds exhibited favorable ADMET properties. MMZs constitute an interesting scaffold for the potential development of new anticancer agents.


Assuntos
Antineoplásicos , Benzaldeídos , Humanos , Benzaldeídos/farmacologia , Antineoplásicos/química , Células HT29 , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Proliferação de Células , Linhagem Celular Tumoral , Proteínas de Transporte/metabolismo
9.
Int J Antimicrob Agents ; 62(5): 106963, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37666435

RESUMO

Angiostrongylus cantonensis, also known as rat lungworm, is an important food-borne zoonotic parasite that causes severe neuropathological damage and symptoms, including eosinophilic meningitis and eosinophilic meningoencephalitis, in humans. At present, the therapeutic strategy for cerebral angiostrongyliasis remains controversial. Benzaldehyde, an important bioactive constituent of Gastrodia elata (Tianma), reduces oxidative stress by inhibiting the production of reactive oxygen species. This study aimed to evaluate the therapeutic effect of benzaldehyde in combination with albendazole on angiostrongyliasis in animal models. First, the data from body weight monitoring and behavioural analyses demonstrated that benzaldehyde improved body weight and cognitive function changes after A. cantonensis infection. Next, blood‒brain barrier breakdown and pathological changes were reduced after benzaldehyde and albendazole treatment in BALB/c mice infected with A. cantonensis. Subsequently, four RNA-seq datasets were established from mouse brains that had undergone different treatments: normal, infection, infection + albendazole, and infection + albendazole + 3-hydroxybenzaldehyde groups. Ultimately, benzaldehyde was found to regulate cell apoptosis, oxidative stress and Sonic Hedgehog signalling in mouse brains infected with A. cantonensis. This study evaluated the therapeutic effect of benzaldehyde on angiostrongyliasis, and provided a potential therapeutic strategy for human angiostrongyliasis in the clinical setting. Moreover, the molecular mechanism of benzaldehyde in mouse brains infected with A. cantonensis was elucidated.


Assuntos
Angiostrongylus cantonensis , Lesões Encefálicas , Camundongos , Ratos , Humanos , Animais , Albendazol/uso terapêutico , Albendazol/farmacologia , Benzaldeídos/farmacologia , Proteínas Hedgehog/farmacologia , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/patologia , Peso Corporal , Encéfalo/patologia
10.
Am J Trop Med Hyg ; 109(5): 999-1005, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37696519

RESUMO

To assess the attracting capacity of aliphatic and aromatic aldehydes to Triatoma infestans, the Chagas disease vector, laboratory tests were conducted using individual compounds and mixtures to evaluate their potential use in baited traps for intradomicile population dynamics analysis. Commercial samples of hexanal, nonanal, and benzaldehyde were used at 95% purity. The experiments were performed at 25°C and 65% relative humidity using two procedures: a glass arena with filter papers impregnated with 1, 5, and 10 µL of the tested compounds and a double-choice olfactometer. Attraction was scored positively if the insect remained more than 30 seconds on one of the surfaces. The results of the study showed that hexanal was attractive to females at higher concentrations (5-10 µL; P < 0.0001), and IV instar nymphs were only attracted at the highest concentration (10 µL; P < 0.01). Nonanal was attractive to IV instar nymphs at 1 and 5 µL (P < 0.0001), whereas males and females were more attracted at 1 µL (P < 0.01 and P < 0.05, respectively). Benzaldehyde showed significant differences with respect to controls, attracting females at low concentrations (1 µL; P < 0.0001) and IV instar nymphs at 5 and 10 µL (P < 0.0001 and P < 0.001, respectively). In the olfactometer, the 60:40 hexanal/nonanal mixture was the most effective. In conclusion, this study demonstrated that the aliphatic and aromatic aldehydes studied here, both individually and in mixtures, could be used as effective attractants for T. infestans in intradomicile-baited traps. These results suggest that mixtures of these compounds could be implemented in field trials for Chagas disease surveillance.


Assuntos
Doença de Chagas , Triatoma , Humanos , Masculino , Animais , Feminino , Benzaldeídos/farmacologia
11.
J Appl Microbiol ; 134(7)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37422440

RESUMO

AIM: Staphylococcus aureus causes several complicated infections. Despite decades of research on developing new antimicrobials, methicillin-resistant S. aureus (MRSA) remains a global health problem. Hence, there is a dire need to identify potent natural antibacterial compounds as an alternative to antimicrobials. In this light, the present work divulges the antibacterial efficacy and the action mechanism of 2-hydroxy-4-methoxybenzaldehyde (HMB) isolated from Hemidesmus indicus against S. aureus. METHODS AND RESULTS: Antimicrobial activity of HMB was assessed. HMB exhibited 1024 µg ml-1 as the minimum inhibitory concentration (MIC) and 2 × MIC as the minimum bactericidal concentration against S. aureus. The results were validated by spot assay, time kill, and growth curve analysis. In addition, HMB treatment increased the release of intracellular proteins and nucleic acid contents from MRSA. Additional experiments assessing the structural morphology of bacterial cells using SEM analysis, ß-galactosidase enzyme activity, and the fluorescence intensities of propidium iodide and rhodamine123 dye divulged that the cell membrane as one of the targets of HMB to hinder S. aureus growth. Moreover, the mature biofilm eradication assay revealed that HMB dislodged nearly 80% of the preformed biofilms of MRSA at the tested concentrations. Further, HMB treatment was found to sensitize MRSA cells upon combining tetracycline treatment. CONCLUSIONS: The present study suggests that HMB is a promising compound with antibacterial and antibiofilm activities and could act as a lead structure for developing new antibacterial drugs against MRSA.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Benzaldeídos/farmacologia , Infecções Estafilocócicas/microbiologia , Testes de Sensibilidade Microbiana , Biofilmes
12.
Int J Mol Sci ; 24(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36768141

RESUMO

Nowadays, bioactive natural products play key roles in drug development due to their safety profile and strong antioxidant power. Vanillin is a natural phenolic compound found in several vanilla beans and widely used for food, cosmetic, and pharmaceutical products. Besides its industrial applications, vanillin possesses several beneficial effects for human health, such as antioxidant activity in addition to anti-inflammatory, anti-mutagenic, anti-metastatic, and anti-depressant properties. Moreover, vanillin exhibits neuroprotective effects on multiple neurological disorders and neuropathophysiological conditions. This study reviews the mechanisms of action by which vanillin prevents neuroinflammation and neurodegeneration in vitro and in vivo systems, in order to provide the latest views on the beneficial properties of this molecule in chronic neurodegenerative diseases and neuropathophysiological conditions.


Assuntos
Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Benzaldeídos/farmacologia , Benzaldeídos/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
13.
Nat Prod Res ; 37(24): 4089-4098, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36661112

RESUMO

Four new natural compounds named hericenone O (1), hericenone P (2), hericenone Q (3), and hericenone R (4), two of them were reported synthetically (3-4), together with eleven known compounds were isolated from the fruiting bodies of Hericium erinaceus. The chemical structures of the isolated compounds were elucidated by using NMR analysis and mass spectrometry, as well as comparisons with the reported data in the literature. The bioactivity evaluation revealed that hericenone Q showed significant cytotoxic activity against Hep-G2 with IC50 values of 23.89 µM, and against HCT-116 with IC50 values of 65.64 µM.


Assuntos
Antineoplásicos , Basidiomycota , Basidiomycota/química , Benzaldeídos/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/análise , Carpóforos/química
14.
Mol Divers ; 27(4): 1713-1733, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36103032

RESUMO

In the polyol pathway, aldose reductase (AR) catalyzes the formation of sorbitol from glucose. In order to detoxify some dangerous aldehydes, AR is essential. However, due to the effects of the active polyol pathway, AR overexpression in the hyperglycemic state leads to microvascular and macrovascular diabetic problems. As a result, AR inhibition has been recognized as a potential treatment for issues linked to diabetes and has been studied by numerous researchers worldwide. In the present study, a series of acyl hydrazones were obtained from the reaction of vanillin derivatized with acyl groups and phenolic Mannich bases with hydrazides containing pharmacological groups such as morpholine, piperazine, and tetrahydroisoquinoline. The resulting 21 novel acyl hydrazone compounds were investigated as an inhibitor of the AR enzyme. All the novel acyl hydrazones derived from vanillin demonstrated activity in nanomolar levels as AR inhibitors with IC50 and KI values in the range of 94.21 ± 2.33 to 430.00 ± 2.33 nM and 49.22 ± 3.64 to 897.20 ± 43.63 nM, respectively. Compounds 11c and 10b against AR enzyme activity were identified as highly potent inhibitors and showed 17.38 and 10.78-fold more effectiveness than standard drug epalrestat. The synthesized molecules' absorption, distribution, metabolism, and excretion (ADME) effects were also assessed. The probable-binding mechanisms of these inhibitors against AR were investigated using molecular-docking simulations.


Assuntos
Aldeído Redutase , Hidrazonas , Aldeído Redutase/química , Aldeído Redutase/metabolismo , Hidrazonas/farmacologia , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Benzaldeídos/farmacologia
15.
Arch Pharm (Weinheim) ; 356(4): e2200554, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36575148

RESUMO

New Schiff base-bearing thiosemicarbazones (1-13) were obtained from 4-hydroxy-3,5-dimethoxy benzaldehyde and various isocyanates. The structures of the synthesized molecules were elucidated in detail. Density functional theory calculations were also performed to determine the spectroscopic properties of the compounds. Moreover, the enzyme inhibition activities of these compounds were investigated. They showed highly potent inhibition effects on acetylcholinesterase (AChE) and human carbonic anhydrases (hCAs) (KI values are in the range of 51.11 ± 6.01 to 278.10 ± 40.55 nM, 60.32 ± 9.78 to 300.00 ± 77.41 nM, and 64.21 ± 9.99 to 307.70 ± 61.35 nM for AChE, hCA I, and hCA II, respectively). In addition, molecular docking studies were performed, confirmed by binding affinities studies of the most potent derivatives.


Assuntos
Tiossemicarbazonas , Humanos , Estrutura Molecular , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Tiossemicarbazonas/farmacologia , Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/química , Anidrase Carbônica I , Benzaldeídos/farmacologia , Teoria da Densidade Funcional , Anidrase Carbônica II
16.
Neurosci Lett ; 793: 137008, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36476758

RESUMO

Although e-cigarette use among youth is recognized as an epidemic, there is limited understanding regarding nicotine's orosensory and chronic use effects in youth, and how fruit e-cigarette flavorings may influence nicotine's effects. We aimed to characterize the orosensory and chronic use effects of nicotine in adolescent rats. We also determined the acute and chronic effects of benzaldehyde, a cherry/berry/almond flavoring, on nicotine's taste, consumption, withdrawal, and reinstatement. Rats were examined for their acute taste responses to the different nicotine concentrations. The effects of chronic exposure on nicotine's taste, withdrawal, and reinstatement were also determined. In addition, impact of benzaldehyde on these nicotine use behaviors was evaluated. While taste responses to low nicotine concentrations did not differ from water, high nicotine concentrations induced aversion. Aversive responses to nicotine that were observed in naïve animals vanished after chronic nicotine exposure, indicating the development of tolerance to nicotine's aversive taste. Additionally, nicotine abstinence after chronic exposure induced withdrawal. Following abstinence, animals reinstated nicotine use. Further, animals showed higher preference to nicotine after reinstatement, compared to preference values before nicotine withdrawal. Benzaldehyde did not alter nicotine's taste reactivity, withdrawal, and reinstatement experiments. Some sex differences were found in benzaldehyde's taste response and choice behavior experiments.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Síndrome de Abstinência a Substâncias , Ratos , Feminino , Masculino , Animais , Nicotina/farmacologia , Benzaldeídos/farmacologia , Paladar , Aromatizantes
17.
Int J Mol Sci ; 23(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36499128

RESUMO

Human skin is composed of three layers, of which the dermis is composed of an extracellular matrix (ECM) comprising collagen, elastin, and other proteins. These proteins are reduced due to skin aging caused by intrinsic and extrinsic factors. Among various internal and external factors related to aging, ultraviolet (UV) radiation is the main cause of photoaging of the skin. UV radiation stimulates DNA damage, reactive oxygen species (ROS) generation, and pro-inflammatory cytokine production such as tumor necrosis factor-alpha (TNF-α), and promotes ECM degradation. Stimulation with ROS and TNF-α upregulates mitogen-activated protein kinases (MAPKs), nuclear factor kappa B (NF-κB), and activator protein 1 (AP-1) transcription factors that induce the expression of the collagenase matrix metalloproteinase-1 (MMP-1). Moreover, TNF-α induces intracellular ROS production and several molecular pathways. Skin aging progresses through various processes and can be prevented through ROS generation and TNF-α inhibition. In our previous study, 2-O-ß-d-glucopyranosyl-4,6-dihydroxybenzaldehyde (GDHBA) was isolated from the Morus alba (mulberry) fruits and its inhibitory effect on MMP-1 secretion was revealed. In this study, we focused on the effect of GDHBA on TNF-α-induced human dermal fibroblasts (HDFs). GDHBA (50 µM) inhibited ROS generation (18.8%) and decreased NO (58.4%) and PGE2 levels (53.8%), significantly. Moreover, it decreased MMP-1 secretion (55.3%) and increased pro-collagen type I secretion (207.7%). GDHBA (50 µM) decreased the expression of different MAPKs as per western blotting; p-38: 35.9%; ERK: 47.9%; JNK: 49.5%; c-Jun: 32.1%; NF-κB: 55.9%; and cyclooxygenase-2 (COX-2): 31%. This study elucidated a novel role of GDHBA in protecting against skin inflammation and damage through external stimuli, such as UV radiation.


Assuntos
Benzaldeídos , Fibroblastos , Morus , Envelhecimento da Pele , Humanos , Ciclo-Oxigenase 2/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Metaloproteinase 1 da Matriz/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Morus/química , NF-kappa B/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Raios Ultravioleta/efeitos adversos , Benzaldeídos/farmacologia
18.
Microbiol Spectr ; 10(6): e0259222, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36314972

RESUMO

The complexity and duration of tuberculosis (TB) treatment contributes to the emergence of drug resistant tuberculosis (DR-TB) and drug-associated side effects. Alternate chemotherapeutic agents are needed to shorten the time and improve efficacy of current treatment. In this study, we have assessed the antitubercular activity of NSC19723, a benzaldehyde thiosemicarbazone molecule. NSC19723 is structurally similar to thiacetazone (TAC), a second-line anti-TB drug used to treat individuals with DR-TB. NSC19723 displayed better MIC values than TAC against Mycobacterium tuberculosis and Mycobacterium bovis BCG. In our checkerboard experiments, NSC19723 displayed better profiles than TAC in combination with known first-line and recently approved drugs. Mechanistic studies revealed that NSC19723 inhibits mycolic acid biosynthesis by targeting the HadABC complex. Computational studies revealed that the binding pocket of HadAB is similarly occupied by NSC19723 and TAC. NSC19723 also improved the efficacy of isoniazid in macrophages and mouse models of infection. Cumulatively, we have identified a benzaldehyde thiosemicarbazone scaffold that improved the activity of TB drugs in liquid cultures, macrophages, and mice. IMPORTANCE Mycobacterium tuberculosis, the causative agent of TB is among the leading causes of death among infectious diseases in humans. This situation has worsened due to the failure of BCG vaccines and the increased number of cases with HIV-TB coinfections and drug-resistant strains. Another challenge in the field is the lengthy duration of therapy for drug-sensitive and -resistant TB. Here, we have deciphered the mechanism of action of NSC19723, benzaldehyde thiosemicarbazone. We show that NSC19723 targets HadABC complex and inhibits mycolic acid biosynthesis. We also show that NSC19723 enhances the activity of known drugs in liquid cultures, macrophages, and mice. We have also performed molecular docking studies to identify the interacting residues of HadAB with NSC19723. Taken together, we demonstrate that NSC19723, a benzaldehyde thiosemicarbazone, has better antitubercular activity than thiacetazone.


Assuntos
Mycobacterium tuberculosis , Tioacetazona , Tiossemicarbazonas , Humanos , Animais , Camundongos , Tioacetazona/farmacologia , Tiossemicarbazonas/farmacologia , Vacina BCG , Ácidos Micólicos/farmacologia , Benzaldeídos/farmacologia , Simulação de Acoplamento Molecular , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico
19.
Bioorg Med Chem ; 72: 117000, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36095944

RESUMO

Vanillic acid has always been in high-demand in pharmaceutical, cosmetic, food, flavor, alcohol and polymer industries. Present study achieved highly pure synthesis of vanillic acid from vanillin using whole cells of Ochrobactrum anthropi strain T5_1. The complete biotransformation of vanillin (2 g/L) in to vanillic acid (2.2 g/L) with 95 % yield was achieved in single step in 7 h, whereas 5 g/L vanillin was converted to vanillic acid in 31 h. The vanillic acid thus produced was validated using LC-MS, GC-MS, FTIR and NMR. Further, vanillic acid was evaluated for in vitro anti-tyrosinase and cytotoxic properties on B16F1 skin cell line in dose dependent manner with IC50 values of 15.84 mM and 9.24 mM respectively. The in silico Swiss target study predicted carbonic acid anhydrase IX and XII as key targets of vanillic acid inside the B16F1 skin cell line and revealed the possible mechanism underlying cell toxicity. Molecular docking indicated a strong linkage between vanillic acid and tyrosinase through four hydrogen and several hydrophobic bonds, with ΔG of -3.36 kJ/mol and Ki of 3.46 mM. The bioavailability of vanillic acid was confirmed by the Swiss ADME study with no violation of Lipinski's five rules.


Assuntos
Ochrobactrum anthropi , Ácido Vanílico , Benzaldeídos/metabolismo , Benzaldeídos/farmacologia , Ácido Carbônico , Hidrogênio , Simulação de Acoplamento Molecular , Ochrobactrum anthropi/metabolismo , Preparações Farmacêuticas , Polímeros , Ácido Vanílico/metabolismo , Ácido Vanílico/farmacologia
20.
Yakugaku Zasshi ; 142(9): 1005-1014, 2022.
Artigo em Japonês | MEDLINE | ID: mdl-36047212

RESUMO

Olive weevils, Pimelocerus (Dyscerus) perforatus Roelofs, utilize olive trees as a host plant. The adult female uses an elongated snout to puncture the trunk and lay one egg a day, resulting in dozens of eggs over its lifetime. The hatched larvae grow by eating the olive trunk. When olive trees die due to feeding damage, olive productivity is seriously impaired. Since there is no effective pesticide for olive weevils so far, the authors aimed to develop a repellent for adult olive weevils from the viewpoint of integrated pest management. We prepared a measurable apparatus for the repellent action against olive weevils and screened chemical substances by using the apparatus. When the repellent activity was measured using vanillin and its derivatives, a clear repellent effect could be confirmed for two types of vanillin derivatives, such as o-vanillin, and 2-hydroxy-4-methoxybenzaldehyde. In addition, when the repellent activity against olive weevils was measured using monoterpenes, four types of acyclic monoterpenes, geraniol, ß-citronellol, citral, and linalool, and three types of monocyclic monoterpenes, (-)-limonene, (+)-limonene, and (-)-menthol, and a bicyclic monoterpene, (1R)-(+)-α-pinene, were found to have dose-dependent repellent activity with statistical significance. In the future, it is expected that the formulation for applying the repellent substances to olive trees and the study of their practicality in olive fields will progress.


Assuntos
Olea , Gorgulhos , Animais , Benzaldeídos/farmacologia , Monoterpenos/química , Monoterpenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...